

Ford Inova Fairfax Hospital CIREN Team

University of Virginia

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

Physiologic and Biomechanical Considerations

Introduction

- The elderly (age > 65) comprise 12% of the population
- Elderly trauma patients account for 25% of injury fatalities per year
- 33% of health care resources are spent on geriatric trauma care
- Urgent need to focus healthcare resources (Bulger, Arneson, Mock, & Jurkovich, 2000)

The Elderly Population

- Census data suggests that the elderly population will expand by 50% by 2050
- The annual occurrence of traumatic injuries in the elder cohort is reported to be as high as 29%. (Marciani, 1999)
- Geriatric trauma patients represent the most rapidly growing trauma population

Known Facts

- Elderly patients are almost five times more likely to die after trauma than similarly injured younger patients (Perdue, Watts, Kaufmann & Trask, 1998)w
- Increased mortality seen in elderly patients may be a reflection of diminished physiologic reserve associated with the aging process

- Defining "elderly" is difficult, since some 70 year olds are physiologically younger than some 55 year olds!
- The decrease in the ability of individuals to withstand the stress of trauma is related to the normal biologic degenerative process, pre-existing illness and the overall wellbeing of the trauma victim

Reality Check

- Much is assumed about the elderly trauma patient, but little is known:
 The literature would lead you to believe that the elderly as a group have significantly impaired physiologic function
- Actual data would suggest that with invasive monitoring and aggressive management, outcomes for the elderly can be significantly improved (Scalea et al J Trauma 1990, 30:129)

Initial Trauma Care

 Although age alone is not a criterion for trauma team activation, the elderly as a group are especially susceptible to serious injuries and require immediate, high-level care to avoid poor outcomes

- A cervical spine protection may be difficult because of osteoporosis, particularly during endotracheal intubation
- B mechanical ventilation should be started early to support ventilation
- C prolonged hypovolemia is worse than fluid overload

Blunt Trauma Resuscitation

- Elderly patients have initially depressed cardiac index but can generate a hyperdynamic response
- Ultimate outcome is poorer than in a younger cohort with equivalent injury (McKinley, Marvin, Cocanour, Marquez, Ware & Moore, 2000)

The Bottom Line

- The normal processes of aging may be a contributing factor because of:
- sensory changes
- slowing of reflexes
- musculoskeletal changes

 The elderly are not just older versions of young people; they require care directed at their specific needs

Cnacial Cancidarations

Neurologic Changes

- Decreased cerebral blood flow
- Brain atrophy
- Increased space in the cranial vault
- Alterations in senses smell, vision, hearing, touch
- Short-term memory changes

Special Considerations:

Cardiovascular Changes

- Vasculature becomes less elastic & sympathetic response is slow
- Compensatory mechanisms tend to be less effective
- Decrease in cardiac contractility causes lower stroke volume and cardiac output

Special Considerations

Pulmonary Changes

- Decrease in lung field size and compliance
- Blood flow to the lung is decreased
- Vital capacity is diminished and gas exchange impaired
- Decreased gag and cough reflexes increase risk of aspiration and pneumonia
- Increased chest wall stiffness

Frequent Respiratory Complications

- Pneumonia
- Pulmonary Effusion
- ARDS
- Lobar Collapse

(Bulger, Arneson, Mock & Jurkovich, 2000)

Special Considerations:

Hepatic Changes

- Decreased total liver blood flow may contribute to adverse drug reactions
- Polypharmacy
- Compromised liver function may increase risk of coagulopathy

Special Considerations

Immune System Changes

- Decreased antibody production in response to antigens
- Decreased inflammatory response
- Increased multisystem failure and sepsis from infectious complications

Musculoskeletal Changes

- Osteoporotic changes
- Joint stiffness secondary to arthritic and other inflammatory conditions
- Bone density and bone mass loss
- Joints and ligaments are less elastic
- Cervical degenerative changes

Trauma Pearls

- Consider dual diagnoses:
 - "Did the MI occur and cause the trauma?"
 - "Did low cerebral bloodflow contribute to the LOC change and be the underlying cause of the trauma?"
- The interval between early warning and "crashing and burning" is abbreviated in the elderly
- Not all older people are confused and disoriented!

Trauma Pearls (cont'd)

✓ Always consider co-morbid and preexisting conditions:

Hypertension

Coronary artery disease

Dysrhythmias

Chronic obstructive pulmonary disease

Diabetes mellitus

(Ferrera, Bartfield & D'Andrea, 2000)

Outcomes Research

- Preexisting comordid conditions did not play a significant role in the ultimate outcomes of geriatric trauma patients
- Severity of injury is the leading determinant of death

(Ferrera, Bartfield & D'Andrea, 2000)

Predictors of Morbidity & Mortality

- ISS predicted ARDS, pneumonia, sepsis & GI complications
- Mortality correlates closely with ISS and is influenced by blood and fluid requirements and by GSC score

(Tornetta, Mostafavi, Riina, et. al 1999)

Long- Term Survival

- Following acute injury, mortality seems to be mediated through a decline in function resulting from the injury
- Strategies to return the elderly patient to preinjury functional status are crucial

(McGwin, Melton, May & Rue, 2000)

Conclusions

- There is insufficient research on the association of trauma, pre-injury comorbidities and the aging process
- The collaboration of clinicians and engineers in reducing the severity of crashrelated geriatric trauma continues to be an important approach for advancing geriatric trauma care

Biomechanical Considerations

Summary – Aging Issues

- Collisions
 - More lateral, lower speed
- People
 - Injury tolerance √
 - Female/Male ratio (100/39 by age 85)
 - Variability in injury tolerance (representation unique for its heterogeneity)
- Vehicle
 - Larger
- Behavior
 - Day (off peak), short trips

Restraint Considerations for an Older Occupant

- Minimize Forces Applied to Body
- Minimize Body <u>Deformations</u>
- Minimize Local Forces
- Control Kinematics to <u>Avoid Contacts</u> with Hard Vehicle Components

Optimization

Passive Optimization

Projections of Several Parameters that Affect Injury Probability

Influence of Several Factors on Driver Injury Probability

MAIS 3+ Injuries (1990-2007)

Change in MAIS 3+ Injuries (1990-2007)

Passive Restraint Optimization

- Using current optimization approach and technology, changes due to aging very small
- Age effects are dominated by other effects (airbag availability, belt use, compatibility)
- New paradigm in occupant protection

DYNAMIC OPTIMIZATION

VEHICLE SENSOR

Impact severity,
Angle

OCCUPANT SENSOR

Condition (Age, Gender, Mass, Size), Position, Belt Use

RESTRAINT PARAMETERS

SPECIFIC TO OCCUPANT AND COLLISION

• SENSING

• ADJUSTING RESTRAINT PARAMETERS

- SENSING
- ADJUSTING RESTRAINT PARAMETERS

- Keyless Entry Transmitter Programmed with Information About Age, Gender, Size
- Interior Sensors Determine Position, Belt Use, Physiology
- Vehicle Sensors Provide Information about Crash

• SENSING

• ADJUSTING RESTRAINT PARAMETERS

ADJUSTING RESTRAINT PARAMETERS

Other Airbags (Load Sharing)

• SENSING

• ADJUSTING RESTRAINT PARAMETERS

DYNAMIC OPTIMIZATION

Computer simulations and crash tests describe occupant response (injury potential) as f(occupant factors, crash factors, restraint factors)

-What is the tool?
What do

measurements mean?

OPTIMIZATION ALGORITHM

Real-World Crash Data

Parameters that Affect Injury Probability

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

What is the Tool? Can A Dummy Represent all Adult Ages?

- Cortical Bone Content
- Bone Density
- CartilageOssification
- Active Musculature

 Stiffness Under Mechanical Loading?

Rib Fracture Tolerance vs. Age

How to Interpret? Injury Probability Functions (Funk 2001)

How to Interpret? Reduction in Tolerance is f(Restraint Type)

[Zhou, Rouhana, Melvin, 1996 Stapp]

Airbag Loading? Combined Belt/Airbag Loading?

CONCLUSIONS

- Passive Optimization
 - Population-based Change in age small
- Dynamic Optimization
 - Optimized for Specific Occupant in Specific Collision
 - Additional Work Needed
 - Sensing
 - Dynamically Adjustable Restraints
 - Biomechanical Characterization of "Age"
 - Injury Tolerance, Constitutive Properties

Case Exemplar Side Impact

39-year-old:

Female driver wearing
3-point seat belt
Air Bag deployed

V₁: 1996 Toyota Camry versus

V₂: Dump Truck

69-year-old:

Male driver wearing 3-point seat belt Air Bag deployed

V₁: 1995 Jaguar XJS versus

V₂: 2000 Chevrolet Lumina

• 39-year-old:

PDOF: 270°

?V: 38 km/h

CDC: 09LYAW4

Max crush: 49 cm @ C2

69-year-old:

PDOF: 310°

?V: 8.6 km/h

CDC Value: 10LPEW2

Max crush: 14 cm @ C3

39-year-old

39-year-old

Injuries

39-year-old

Injuries (ICD)	AIS	Info	Aspect
	Severity	Source	(R,L,bilat,etc)
Frontal lobe contusion x2	140614.3	CT	Posterior
(851.00)			
Facial (ear) abrasions	290202.1	Exam	Left
(910.0)			
Tongue laceration (873.64)	243402.1	Exam	Under tongue
Upper extremity contusion	790202.1	Exam	Left
(clavicle) (912.0)			
Upper extremity (hand)	790202.1	Exam	Right
abrasion (884.0)			
Upper extremity (arm)	790402.1	Exam	Left
contusion (912.0)			
Lower extremity contusion	890402.1	Exam	Bilateral
(924.5)			
Lower extremity contusion	890402.1	Exam	Left
(medial knee)			

Injuries (ICD)	AIS Severity	Info	Aspect
		Source	(R,L,bilat,etc)
5 th Rib fracture w PTX (807.01 & 860.0)	450214.3	X-ray	Left
Pulmonary contusion ((861.21)	441406.3	X-ray	Left
Laceration posterior calf – 5.5 cm (891.0)	890602.1	Exam	Left

Case Summaries

39-year-old

- Evaluation in the ER significant for abrasions and contusions to her face, upper and lower extremities.
- Head CT revealed 2 small (2 mm/3 mm) frontal lobe contusions.
- Discharged home on HD #2.
- Hospital Charge: \$9,868

- Evaluation in the ER significant for 5 cm laceration of his left calf which was sutured in the ED.
- Chest x-ray revealed left-sided pneumothorax, fracture of the 5th rib on the left and left pulmonary contusion.
- Discharged home on HD # 3.
- Hospital Charge: \$3,969

Case Exemplar Frontal Impact

• 27-year-old:

Male driver
Unrestrained
Air Bag deployed

1996 Ford Van E250 versus Pole • 57-year-old:

Male driver
Unrestrained
Air Bag deployed

1997 Mazda Pick-up Truck versus
Pole

• 27-year-old:

PDOF: 0°

?V: 65 km/h

CDC: 12FCEW4

Max crush: 82 cm @ C3

• 57-year-old:

PDOF: 0°

?V: 39 km/h

CDC Value: 12FREW3

Max crush: 44 cm @ C3

27-year-old

27-year-old

Injuries

27-year-old

Injuries (ICD)	AIS Severity	Info Source	Aspect (B.I. bilat ata)
Scalp abrasions (910.0)	190202.1	Exam	(R,L,bilat,etc) Center
Chest abrasion (911.0)	490402.1	Exam	Right
	790602.1	Exam	J
Arm laceration (884.0)		2.1	Right
Hand abrasion (914.0)	790202.1	Exam	Left
Finger laceration (883.0)	790602.1	Exam	Right
Displaced acetabular fracture	852604.3	CT	Right
(808.0)			
Hip dislocation (835.00)	850614.2	CT	Right
Knee laceration (891.0)	890602.1	Exam	Left
Shin contusion (924.10)	890402.1	Exam	Left
Sciatic nerve contusion	830602.2	CT	Whole
(956.0)			
Lung contusion (861.21)	441402.3	СТ	Bilateral

Injuries (ICD)	AIS Severity	Info Source	Aspect (R,L,bilat,etc)
Scalp abrasion (910.0)	190202.1	Exam	Central – hairline
Eyelid contusion (921.1)	290402.1	Exam	Right
Comminuted acetabular fracture (808.0)	852604.3	СТ	Right
Hip dislocation (835.00)	850614.2	X-ray	Right
Knee contusion (924.11)	890402.1	Exam	Left

Case Summaries

27-year-old

- Evaluation in the ER significant for multiple abrasions and contusions.
- CT of the abdomen and pelvis identified a complex displaced right acetabular fracture and hip dislocation with displacement of the right superior ileum.
- HD #1 ORIF of fractur
- Discharged home on hospital day # 4.
- Hospital Charge: \$19,619

- Evaluation in the ER significant for a scalp abrasion, bruise on his right eyelid and bruise of his left knee.
- Radiologic examination identified a right comminuted fracturedislocation of the hip and acetabulum.
- HD #2 ORIF of fracture and removal of multiple loose fragments in the joint.
- Discharged home with home health care on HD # 29.
- Hospital Charge: \$46,699

Questions?